BOUNDS ON THE NUMBER OF CYCLES OF LENGTH THREE IN A PLANAR GRAPH^{\dagger}

ΒY

S. L. HAKIMI AND E. F. SCHMEICHEL

ABSTRACT

Let G be a p-vertex planar graph having a representation in the plane with nontriangular faces F_1, F_2, \dots, F_r . Let f_1, f_2, \dots, f_r denote the lengths of the cycles bounding the faces F_1, F_2, \dots, F_r respectively. Let $C_3(G)$ be the number of cycles of length three in G. We give bounds on $C_3(G)$ in terms of $p_1, f_1, f_2, \dots, f_r$. When G is 3-connected these bounds are bounds for the number of triangles in a polyhedron. We also show that all possible values of $C_3(G)$ between the maximum and minimum value are actually achieved.

1. Introduction

Our terminology and notation will be standard throughout this paper. A good reference for undefined terms is [5].

Let G be a planar graph without loops or multiple edges. Denote the set of vertices of G by V(G) and the set of edges of G by E(G), with p = |V(G)| and q = |E(G)|. Let $C_3(G)$ denote the number of cycles of length three (for brevity, 3-cycles) in G. In a previous paper [3], the authors proved the following result.

THEOREM 1. Let G be a maximal planar graph on $p \ge 6$ vertices. Then

$$2p-4 \leq C_3(G) \leq 3p-8.$$

Moreover, for every integer $s \neq 3p - 9$ such that $2p - 4 \leq s \leq 3p - 8$, there exists a p-vertex maximal planar graph G with $C_3(G) = s$. There does not exist a p-vertex maximal planar graph G with $C_3(G) = 3p - 9$.

The purpose of this paper is to give bounds for $C_3(G)$ when G is a planar (though not necessarily maximal planar) graph with vertex connectivity ≥ 2 . If

[†] This research was supported in part by the U.S.A.F. Office of Scientific Research, Systems Command, under Grant AFOSR-76-3017 and the National Science Foundation under Grant ENG79-09724.

Received October 8, 1980 and in revised form July 1, 1981

such a graph is embedded in the plane, we will call the cycles which bound the faces the *facial cycles* of this embedding, while all remaining cycles will be called the *nonfacial* (or *separating*) cycles of the embedding. Let $f_1 \ge f_2 \ge \cdots \ge f_r \ge 4$ be a sequence of integers. We will say that a graph G satisfies property $P(f_1, f_2, \dots, f_r)$, if G is 2-connected planar, and if G has an embedding in the plane with exactly r facial cycles which are not 3-cycles, and the lengths of these r facial cycles are f_1, f_2, \dots, f_r . In the following section, we give bounds for $C_3(G)$ under the additional assumption that G is 3-connected. In the final section, we establish that, in contrast to the situation for maximal planar graphs, all possible values of $C_3(G)$ between the maximum and minimum value are actually achieved for some p-vertex graph with property $P(f_1, f_2, \dots, f_r)$.

2. Basic results

We begin with some preliminary observations. Let G be a p-vertex graph with property $P(f_1, f_2, \dots, f_r)$ so that in the corresponding embedding there are Δ facial 3-cycles. It follows at once by Euler's formula that $\Delta + r = |E(G)| - p + 2$. Since each edge of G belongs to exactly two facial cycles, we have $2|E(G)| = 3\Delta + \sum_{i=1}^{r} f_i$. From these two equalities, we obtain

(1)
$$\Delta = 2p - 4 + 2r - \sum_{i=1}^{r} f_i = 2p - 4 - \sum_{i=1}^{r} (f_i - 2)$$

and

(2)
$$|E(G)| = 3p - 6 + 3r - \sum_{i=1}^{r} f_i = 3p - 6 - \sum_{i=1}^{r} (f_i - 3).$$

We now prove the following.

LEMMA 1. Let $f_1 \ge f_2 \ge \cdots \ge f_r \ge 4$ be a sequence of integers. Then there exists a p-vertex graph G satisfying property $P(f_1, f_2, \cdots, f_r)$ if and only if $p \ge f_1$ and $2p - 4 - \sum_{i=1}^r (f_i - 2) \ge 0$. Moreover, in that case G can be constructed so that G contains no separating 3-cycles.

REMARK. It is worth noting that in its dual form this lemma becomes the problem of realizing a sequence of integers as the vertex degrees of a planar, 2-connected, 3-edge-connected multigraph G'. Moreover, each 3-edge-cut in G' must consist of the edges incident at a degree three vertex. The difficulty in the proof here is primarily due to the above connectivity requirements.

PROOF. If G satisfies property $P(f_1, f_2, \dots, f_r)$, then by (1) we have $2p - 4 - \sum_{i=1}^{r} (f_i - 2) = \Delta \ge 0$. Also, since G is 2-connected, the facial cycles are simple cycles and consequently $p \ge f_1$. This proves the necessity.

To prove the sufficiency, we proceed as follows. Let $j \leq r$ be the largest integer such that $f_1 + \sum_{i=2}^{j} (f_i - 2) \leq p$. Since $p \geq f_1$, it is clear that $j \geq 1$. Consider the graph G' shown in Fig. 1, where the face F_i is bounded by a cycle of length f_i , for $i = 1, 2, \dots, j$, and $p' = f_1 + \sum_{i=2}^{j} (f_i - 2)$.

Fig. 1. Graph constructed in the proof of Lemma 1.

If j = r, we obtain the desired graph G from G' in two steps as follows:

(a) Consider the exterior face of G' bounded by the cycle $C' = (v_1, v_2, \dots, v_{p'}, v_1)$. We wish to triangulate this exterior face such that no separating 3-cycles are created in the process. It is easy to see that this can be done unless there exists a vertex u which is adjacent to every vertex v of C' (with $v \neq u$ if u is on C'). Since no such vertex u exists, the desired triangulation can be accomplished.

Let G'_1 denote the graph which results when (a) is completed. Then the facial cycles of G'_1 which are not 3-cycles have precisely the lengths f_1, f_2, \dots, f_r . Moreover G'_1 has $p' \leq p$ vertices, and is 2-connected with no separating 3-cycles. Hence, if p' = p, G'_1 itself is the graph we seek. Assuming p' < p, we can construct the desired graph G from G'_1 , by adding p - p' vertices to G'_1 as follows:

(b) Select any facial cycle C in G'_1 having length $l \ge 4$. Let x, y, z be any three consecutive vertices on C such that (x, z) is not an edge in G'_1 . (It is easily seen that such a choice is always possible.) Add vertex $v_{p'+1}$ inside C and join

 $v_{p'+1}$ to x, y, and z. The resulting (p'+1)-vertex graph has no separating 3-cycles, and satisfies property $P(f_1, f_2, \dots, f_r)$. If p'+1 < p, repeat the above construction until we obtain a p-vertex graph with no separating 3-cycles having property $P(f_1, f_2, \dots, f_r)$.

This completes the proof if j = r.

Suppose then that j < r. We begin by modifying the graph G' in Fig. 1 as shown in Fig. 2, where the face F_{j+1} is created by the addition of p - p' vertices forming a path from $v_{p'}$ to v_p together with an edge (v_p, v_a) such that the length of the cycle bounding F_{j+1} is f_{j+1} . This immediately implies that $a = f_{j+1} + p' - p - 1 \ge 2$. Denote the resulting graph by G''. We see that G'' is a 2-connected, p-vertex graph having facial cycles of lengths f_1, f_2, \dots, f_{j+1} , with the exterior face bounded by a cycle C of length $p - a + 1 = 2p - 2 - \sum_{i=1}^{j+1} (f_i - 2)$. This implies that

(3)
$$a = \sum_{i=1}^{j+1} (f_i - 2) - p + 3.$$

Fig. 2. Graph constructed in the proof of Lemma 1.

We now form facial cycles of lengths $f_{j+2}, f_{j+3}, \dots, f_r$ by adding edges $(v_a, v_{a_{j+2}}), (v_a, v_{a_{j+3}}), \dots, (v_a, v_{a_r})$ in the exterior of C, where $a_k = (a+1) + \sum_{l=j+2}^{k} (f_l - 2)$, for $k = j+2, j+3, \dots, r$. We observe that facial cycles of all desired lengths will be present if $a + 1 + \sum_{l=j+2}^{r} (f_l - 2) \leq p$. This inequality, however, is implied by the hypothesis and (3). Finally, we note that if $(a+1) + \sum_{l=j+2}^{r} (f_l - 2) = a_r < p$, then there remains an unwanted facial cycle $(v_a, v_{a_r}, v_{a_{r+1}}, \dots, v_p, v_a)$ of length > 3 which can be triangulated without forming a

separating 3-cycle as in (a) above. This yields the desired graph, and completes the proof of Lemma 1.

We now begin considering bounds for $C_3(G)$. The following theorem gives a tight lower bound for $C_3(G)$.

THEOREM 2. Let G be a p-vertex graph having property $P(f_1, f_2, \dots, f_r)$. Then

$$C_3(G) \ge (2p-4) - \sum_{i=1}^r (f_i - 2).$$

Furthermore, there exists a p-vertex graph G satisfying property $P(f_1, f_2, \dots, f_r)$ for which $C_3(G) = (2p-4) - \sum_{i=1}^r (f_i - 2)$.

PROOF. By (1), the number of facial 3-cycles in G is equal to $(2p-4) - \sum_{i=1}^{r} (f_i - 2)$, and so $C_3(G) \ge (2p-4) - \sum_{i=1}^{r} (f_i - 2)$. The existence of a p-vertex graph G with property $P(f_1, f_2, \dots, f_r)$ for which $C_3(G) = (2p-4) - \sum_{i=1}^{r} (f_i - 2)$ is implied by Lemma 1. This completes the proof of Theorem 2.

In the remainder of this paper, we will concentrate on giving upper bounds for $C_3(G)$, and determining the quality of these bounds. We begin with the following theorem.

THEOREM 3. Let G be a p-vertex graph with property $P(f_1, f_2, \dots, f_r)$. Assume $f_1 \ge f_2 \ge \dots \ge f_r$. Set

$$U_p(f_1, f_2, \cdots, f_r) = \min \left\{ 3p + 4r - 8 - \left[\frac{3}{2} \sum_{i=1}^r f_i \right], \ 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i \right\}.$$

Then

(i) $C_3(G) \leq U_p(f_1, f_2, \dots, f_r).$

(ii) There exists a p-vertex graph G' with property $P(f_1, f_2, \dots, f_r)$ such that: in case $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then

$$C_3(G) = U_p(f_1, f_2, \cdots, f_r),$$

and if $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then

$$C_3(G) \ge U_p(f_1, f_2, \cdots, f_r) - (r-1).$$

(iii) If $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then $U_p(f_1, f_2, \dots, f_r) = 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i$, and for every integer s with $(2p - 4) - \sum_{i=1}^r (f_i - 2) \le s \le U_p(f_1, f_2, \dots, f_r)$, there exists a p-vertex graph G with property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G) = s$.

REMARK. The upperbound $U_p(f_1, f_2, \dots, f_r)$ does not seem tight when $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$. Also note that when $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, $C_3(G)$ can be any number in the possible range, in contrast to the result of Theorem 1.

PROOF. (i) We first show that $C_3(G) \leq 3p + 4r - 8 - [\frac{3}{2}\sum_{i=1}^r f_i]$. Since all variables involved in the inequality are integers, it suffices to show instead that $C_3(G) \leq 3p + 4r - 8 - \frac{3}{2}\sum_{i=1}^r f_i$. When r = 0, this inequality follows by Theorem 1. We therefore proceed by induction on r.

Suppose therefore that $r \ge 1$ is the smallest integer such that there exists a *p*-vertex graph G having property $P(f_1, f_2, \dots, f_r)$ with

(4)
$$C_{3}(G) > 3p + 4r - 8 - \frac{3}{2} \sum_{i=1}^{r} f_{i}.$$

We may also assume that p is minimal in this regard. We begin by showing that

(5)
$$3p + 4r - 8 - \frac{3}{2} \sum_{i=1}^{r} f_i \ge \Delta = (2p - 4) - \sum_{i=1}^{r} (f_i - 2).$$

We may rewrite (5) as

(6)
$$p+2r-4-\frac{1}{2}\sum_{i=1}^{r}f_{i} \ge 0.$$

Since $\Delta = (2p - 4) - \sum_{i=1}^{r} (f_i - 2) \ge 0$, we have

(7)
$$p+r-2-\frac{1}{2}\sum_{i=1}^{r}f_{i} \geq 0.$$

Obviously (7) implies the validity of (6) if $r \ge 2$. We note that $r \ge 1$ and if r = 1, (6) can be rewritten as $p - 2 - \frac{1}{2}f_1 \ge 0$, which is true since $p \ge f_1 \ge 4$. This proves the validity of (5).

From (4) and (5) we conclude that $C_3(G) > \Delta$. This implies that G has at least one separating 3-cycle in this embedding, say T = (a, b, c, a). Let G_1 (resp., G_2) denote the subgraph of G induced by the vertices a, b, c and all vertices of G in the interior (resp, exterior) of T. Note that G_1 and G_2 share only the 3-cycle T, and that each facial cycle of G belongs to either G_1 or G_2 . Let $S_1 \cup S_2$ be a partition of $\{1, 2, \dots, r\}$ into sets (one of which may be empty) such that facial cycles of lengths $\{f_i \mid j \in S_i\}$ belong to G_i , for i = 1, 2. Let p_1 and $p_2(< p)$ be the number of vertices of G_1 and G_2 , respectively. Then by the induction hypothesis (and minimality of p)

(8)
$$C_3(G_i) \leq 3p_i + 4|S_i| - 8 - \frac{3}{2} \sum_{j \in S_i} f_j,$$

for i = 1, 2.

Clearly $p = p_1 + p_2 - 3$ and $C_3(G) = C_3(G_1) + C_3(G_2) - 1$. Adding the equations in (8) for i = 1, 2, and making use of the last two equalities, we obtain

(9)
$$C_3(G) \leq 3(p_1 + p_2) + 4r - 16 - \frac{3}{2} \sum_{i=1}^r f_i - 1$$

or

(10)
$$C_3(G) \leq 3p + 4r - 8 - \frac{3}{2} \sum_{i=1}^r f_i$$

This contradicts (4), however. We conclude therefore that indeed

(11)
$$C_3(G) \leq 3p + 4r - 8 - \frac{3}{2} \sum_{i=1}^r f_i$$

as desired.

We next want to prove that

(12)
$$C_3(G) \leq 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i$$

when $r \ge 1$.

We begin by proving (12) when r = 1; which is, that $C_3(G) \leq 3p - 2 - 2f_1$. Suppose otherwise. Let G be a p-vertex graph (with p minimal) having property $P(f_1)$ such that

(13)
$$C_3(G) > 3p - 2 - 2f_1$$

Using analogous reasoning as in the first part of the proof, we can prove that G has a separating 3-cycle T = (a, b, c, a). Let G_1 and G_2 be defined as above. We may assume, without loss of generality, that G_1 contains the facial cycle of size f_1 , and that G_2 is maximal planar. Then

$$C_3(G_1) = C_3(G) - C_3(G_2) + 1 > 3p - 2 - 2f_1 - (3p_2 - 8),$$

or

(14)
$$C_3(G_1) > 3p_1 - 2 - 2f_1.$$

But this violates the minimality of p. We have thus proved (12) when r = 1.

We proceed therefore by induction on r. Assume that r > 1 is the smallest integer such that there exists a p-vertex graph G with property $P(f_1, f_2, \dots, f_r)$ with

(15)
$$C_3(G) > 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i$$

and assume moreover that p is minimal in this regard. It is easily seen that $3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i \ge \Delta$, and hence G contains a separating 3-cycle, say

T = (a, b, c, a). Define subgraphs G_1, G_2 of G as before, and suppose without loss of generality that G_1 has a facial cycle of length f_1 . If G_2 is maximal planar, then $C_3(G_2) \leq 3p_2 - 8$. This fact together with (15) yields

$$C_{3}(G_{1}) = C_{3}(G) - C_{3}(G_{2}) + 1 > \left(3p + 2r - 4 - f_{1} - \sum_{i=1}^{r} f_{i}\right) - (3p_{2} - 8) + 1,$$

or

$$C_3(G_1) > 3p_1 + 2r - 4 - f_1 - \sum_{i=1}^r f_i$$

This violates the minimality of p. Hence we may assume that G_2 contains at least one facial cycle of length ≥ 4 . Let $S_1 \cup S_2$ be a partition of $\{1, 2, \dots, r\}$ into nonempty sets such that facial cycles of lengths $\{f_i \mid j \in S_i\}$ belong to G_i , for i = 1, 2. By the induction hypothesis, we have

(16)
$$C_3(G_1) \leq 3p_1 + 2|S_1| - 4 - f_1 - \sum_{j \in S_1} f_j$$

and

(17)
$$C_3(G_2) \leq 3p_2 + 2|S_2| - 4 - \max_{j \in S_2} f_j - \sum_{j \in S_2} f_j.$$

Adding (16) and (17), and using the fact that $\max_{j \in S_2} f_j \ge 4$, we obtain

$$C_{3}(G) = C_{3}(G_{1}) + C_{3}(G_{2}) - 1 \leq 3(p_{1} + p_{2}) + 2r - 12 - f_{1} - \sum_{i=1}^{r} f_{i} - 1$$
$$= 3p + 2r - 4 - f_{1} - \sum_{i=1}^{r} f_{i}.$$

This contradicts (15), and establishes the validity of (12). The proof of (i) is now complete.

(ii) Let p_0 be the smallest positive integer such that $p_0 \ge f_1$ and $2p_0 + 2r - 4 - \sum_{i=1}^r f_i \ge 1$. Then[†]

(18)
$$p_0 = \max\left\{f_1, \left[\frac{1}{2}\left(5-2r+\sum_{i=1}^r f_i\right)\right]\right\} = \max\left\{f_1, 3-r+\left\lfloor\frac{1}{2}\sum_{i=1}^r f_i\right\rfloor\right\}.$$

So by Lemma 1, there exists a graph G_0 with p_0 vertices with property $p(f_1, f_2, \dots, f_r)$ such that $C_3(G_0) = 2p_0 + 2r - 4 - \sum_{i=1}^r f_i = \Delta$ and $\Delta \ge 1$. We then construct G from G_0 by recursively adding $p - p_0$ vertices in the interior of a

' If $p_0 > p$, then $2p + 2r - 4 - \sum_{i=1}^r f_i = 0$ and $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$. Part (ii) of Theorem 3 is trivially correct as $U_p(f_1, f_2, \dots, f_r) - (r-1) < 0$. Therefore, it is assumed that $p_0 \leq p$.

facial 3-cycle, and joining each vertex to the three vertices incident to the face. Note that the addition of each such vertex creates three additional 3-cycles. As a result, $C_3(G) = C_3(G_0) + 3(p - p_0)$, or

(19)
$$C_3(G) = 3p - p_0 + 2r - 4 - \sum_{i=1}^r f_i.$$

If $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then, by (18), $p_0 = f_1$ and $C_3(G) = 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i$. If on the other hand $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then $p_0 = 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, and so by (19) we have $C_3(G) = 3p + 3r - 7 - \lfloor \frac{3}{2} \sum_{i=1}^r f_i \rfloor$. We summarize this as follows:

(20)
$$C_{3}(G) = \begin{cases} 3p + 3r - 7 - \left\lfloor \frac{3}{2} \sum_{i=1}^{r} f_{i} \right\rfloor, & \text{if } f_{1} < 3 - r + \left\lfloor \frac{1}{2} \sum_{i=1}^{r} f_{i} \right\rfloor, \\ 3p + 2r - 4 - f_{1} - \sum_{i=1}^{r} f_{i}, & \text{if } f_{1} \ge 3 - r + \left\lfloor \frac{1}{2} \sum_{i=1}^{r} f_{i} \right\rfloor. \end{cases}$$

It is easily seen that if $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then $U_p(f_1, f_2, \dots, f_r) \leq 3p + 4r - 8 - \lceil \frac{3}{2} \sum_{i=1}^r f_i \rceil$, and consequently $C_3(G) \geq U_p(f_1, f_2, \dots, f_r) - (r-1)$. On the other hand, if $f_1 \geq 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, then $U_p(f_1, f_2, \dots, f_r) = 3p + 2r - 4 - f_1 - \sum_{i=1}^r f_i$, and consequently $U_p(f_1, f_2, \dots, f_r) = C_3(G)$. This completes the proof of (ii).

(iii) Suppose that $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$. We have already established that if G is a p-vertex graph with property $P(f_1, f_2, \dots, f_r)$, then

(21)
$$2p-4-\sum_{i=1}^{r} (f_i-2) \leq C_3(G) \leq 3p+2r-4-f_1-\sum_{i=1}^{r} f_i.$$

We now show that for any integer s in the range implied by (21), there exists a p-vertex graph G having property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G) = s$.

Since $f_1 \ge 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$, (18) implies that $f_1 = p_0$. So by Lemma 1, a p_0 -vertex graph G_0 can be constructed for which $C_3(G_0) = 2p_0 + 2r - 4 - \sum_{i=1}^r f_i = \Delta \ge 1$. To construct G from G_0 , we add $p - p_0$ vertices to G_0 as follows: Let $0 \le x \le p - p_0$. We add x vertices to G_0 in the manner described in Lemma 1 (i.e., each vertex is placed in the interior of a facial cycle of length ≥ 4 , and then joined to three consecutive vertices on the cycle). Once again, this can be accomplished without creating separating 3-cycles. Once these x vertices are added, the resulting $(p_0 + x)$ -vertex graph G_1 satisfies property $P(f_1, f_2, \dots, f_r)$ and contains $C_3(G_0) + 2x$ 3-cycles. Next, we add $p - p_0 - x$ vertices to G_1 by recursively placing a vertex in the interior of a facial 3-cycle and joining this vertex to the three vertices incident to the 3-cycle. The resulting graph G is a

p-vertex graph with property $P(f_1, f_2, \dots, f_r)$, and also $C_3(G) = C_3(G_0) + 2x + 3(p - p_0 - x)$, or

(22)
$$C_3(G) = 3p - p_0 - x + 2r - 4 - \sum_{i=1}^r f_i.$$

Since x was any integer such that $0 \le x \le p - p_0$, it follows that $C_3(G)$ can assume any value from $2p + 2r - 4 - \sum_{i=1}^{r} f_i$ to $3p - p_0 + 2r - 4 - \sum_{i=1}^{r} f_i$. Noting that $p_0 = f_1$, we have the desired result.

The proof of Theorem 3 is complete.

We now wish to show that Theorem 3 provides nearly complete results when r = 1 or 2. More precisely, we have the following result.

COROLLARY. Let G be a p-vertex graph satisfying property $P(f_1, f_2, \dots, f_r)$. Assume $f_1 \ge f_2 \ge \dots \ge f_r$, and $1 \le r \le 2$, with $f_1 > f_2$ if r = 2. Then

$$2p-4-\sum_{i=1}^{r}(f_i-2) \leq C_3(G) \leq 3p+2r-4-f_1-\sum_{i=1}^{r}f_i.$$

Moreover for every integer s in the range indicated above, there exists a p-vertex graph G satisfying property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G) = s$.

PROOF. The validity of the bounds are established in Theorem 3. To prove the second part of the corollary, note that if r = 1, then, since $f_1 \ge 3 - 1 + \lfloor \frac{1}{2}f_1 \rfloor$, Theorem 3 (iii) gives the desired result. Also if r = 2 and $f_1 \ge f_2 + 1$, then $f_1 \ge 3 - 2 + \lfloor \frac{1}{2}(f_1 + f_2) \rfloor$, and by Theorem 3 (iii), the corollary follows.

We noted that the upper bound for $C_3(G)$ in Theorem 3 is not uniformly tight when $f_1 < 3 - r + \lfloor \frac{1}{2} \sum_{i=1}^r f_i \rfloor$. Nevertheless, there are graphs for which this upper bound is achieved. For instance, let p = 9, r = 5, $f_1 = 5$, and $f_2 = f_3 = f_4 = f_5 = 4$. Note that then $U_9(5, 4, 4, 4, 4) = 7$. We observe that the graph G of Fig. 3 satisfies property P(5, 4, 4, 4, 4) and has $C_3(G) = 7$. Such occurrences where the upper bound is attained, though not unique, are by no means common either. In fact, they probably can occur either when $f_2 = f_1 - 1$, and $f_3 = f_4 = \cdots = f_r = 4$, or when p > r + 2 and $f_1 = f_2 = \cdots = f_r = 4$. On the other hand, let p = 23, r = 10,

Fig. 3. A graph which achieves the upperbound in Theorem 3.

 $f_1 = 16$, $f_2 = 8$, and $f_3 = f_4 = \cdots = f_{10} = 6$. Note that $U_{33}(16, 8, 6, 6, \cdots, 6) = \min\{23, 27\} = 23$. The 33-vertex graph G shown in Fig. 4 is a 2-connected, has the appropriate facial structure, and is believed to have the largest possible number of 3-cycles subject to these restrictions and yet $C_3(G) = 17$. It should be noted, however, that $C_3(G)$ still differs from $U_{33}(16, 8, 6, \cdots, 6)$ by less than the quantity r - 1 = 9 as predicted in Theorem 3. The essential difficulty in finding an achievable upperbound stems from our inability to control the number of separating 3-cycles in the p_0 -vertex graph that is constructed, where p_0 is given by (18).

Fig. 4. A graph which is believed to have the largest number of 3-cycles and yet does not achieve the bound of Theorem 3.

3. Bounds on $C_3(G)$ when G is 3-connected

In a planar graph G with connectivity 2 (such as the graphs in Figs. 3 and 4), the lengths of the facial cycles depend on the particular embedding of the graph G in the plane. On the other hand, it is known (see [5, p. 105], [7]) that if a planar graph G has connectivity ≥ 3 , then G has a unique embedding in the plane, and hence the lengths of the facial cycles are uniquely determined. Moreover, it is known (see [1, 2]) that a graph G will be the 1-skeleton of a polyhedron if and only if G is 3-connected and planar. This means that the study of the number of 3-cycles in polyhedra is equivalent to studying the number of 3-cycles in 3-connected planar graphs.

To begin with, let us consider again the 33-vertex graph G in Fig. 4. Note that $C_3(G) = 17$. By way of contrast, we exhibit in Fig. 5 a 3-connected, 33-vertex planar graph G' whose facial cycle lengths are exactly the same as those in G, but with $C_3(G') = 11$. Our next result shows that G' has the maximum number of

Fig. 5. A 3-connected graph with the same facial cycles and number of vertices as the graph of Fig. 4.

3-cycles among all 3-connected, 33-vertex planar graphs with this facial cycle length.

THEOREM 4. Let G be a 3-connected, p-vertex graph with property $P(f_1, f_2, \dots, f_r)$. Then

(23)
$$C_3(G) \leq 3p + 4r - 8 - \left[\frac{5}{3}\sum_{i=1}^r f_i\right].$$

PROOF. The inequality is true if r = 0 by Theorem 1, and so we proceed by induction. Suppose then that $r \ge 1$ is smallest integer such that there exists a 3-connected, *p*-vertex planar graph G having property $P(f_1, f_2, \dots, f_r)$ with

(24)
$$C_3(G) > 3p + 4r - 8 - \left[\frac{5}{3}\sum_{i=1}^r f_i\right],$$

and with p minimal in this regard.

We wish to show first that G contains a separating triangle. To do this, we need to show that

$$3p + 4r - 8 - \left[\frac{5}{3}\sum_{i=1}^{r} f_i\right] \ge \Delta = 2p + 2r - 4 - \sum_{i=1}^{r} f_i,$$

which can be rewritten as

(25)
$$3p + 6r - 12 - 2 \cdot \sum_{i=1}^{r} f_i \ge 0.$$

Since each vertex of G has degree at least three, we have

(26)
$$2|E(G)| = \sum_{i=1}^{r} f_i + 3\Delta \ge 3p.$$

Substituting $2p + 2r - 4 - \sum_{i=1}^{r} f_i$ for Δ in (26) yields (25).

If we denote the separating 3-cycle by T = (a, b, c, a) and define G_1 and G_2 as before, it is easy to see that as G is 3-connected so are G_1 and G_2 , and hence G_1 and G_2 satisfy the appropriate inequality (23). Arguing now as we have a number of times previously, we would obtain an inequality contradicting (24).

This completes the proof of Theorem 4.

We have observed that the graph in Fig. 5 achieves the upperbound given in Theorem 4. However, in general this bound does not seem tight. For example, if G is a 3-connected, 9-vertex planar graph with property P(5, 4, 4, 4, 4), then (23) suggests that $C_3(G) \leq 4$. In fact, it seems that such a graph will actually satisfy $C_3(G) \leq 3$, with equality occurring, for example, in the graph of Fig. 6.

Fig. 6. A 3-connected 9-vertex planar graph with property P(5, 4, 4, 4, 4) which is believed to have the largest number of 3-cycles.

We observe that the problem of determining when there exists a *p*-vertex 3-connected planar graph G with property $P(f_1, f_2, \dots, f_r)$, regardless of the number of separating 3-cycles (G must always contain $\Delta = 2p - 4 - \sum_{i=1}^r (f_i - 2)$ facial 3-cycles), is equivalent to a singularly difficult problem in graph theory. To see why, note that the dual of G would be a 3-connected planar graph G_1 with vertex degree sequence f_1, f_2, \dots, f_r 3,...,3. Moreover, as *p* varies Δ will take on all nonnegative odd or even integer values (depending on the parity of $\sum_{i=1}^r f_i$). Thus we see that knowing when the graph G exists is equivalent in general to knowing when a sequence of integers is the degree sequence of a planar graph without multiple edges. It is known (see [6]) that this problem is exceedingly difficult. This problem is of course much easier if we allow the realization to be a multigraph; in fact, the solution to that problem (in dual form) is precisely the result of Lemma 1. On the other hand, neither the result of Lemma 1 nor a complete solution to the planar degree sequence problem in full generality (if it were possible) would completely settle the problem of finding tight bounds for $C_3(G)$, since we still would have no way of determining or controlling the number of separating 3-cycles in G.

We now give a still tighter bound for $C_3(G)$ than the bound in Theorem 4 when G is a 3-connected planar graph with an additional restriction. A p-vertex graph G is said to satisfy property $P_1(f_1, f_2, \dots, f_r)$ if (1) G satisfies $P(f_1, f_2, \dots, f_r)$ and (2) if V_i is the set of vertices on the facial cycle of length f_i , bounding the face F_i , then for every subset $S \subseteq \{1, 2, \dots, r\}$ of cardinality ≥ 2 , we have[†]

(27)
$$\left| \bigcup_{i \in S} V_i \right| \ge 4 + \sum_{i \in S} (f_i - 3).$$

We now prove the following.

THEOREM 5. Let G be a 3-connected p-vertex graph with property $P_1(f_1, f_2, \dots, f_r)$. Then

$$2p-4-\sum_{i=1}^{r} (f_i-2) \leq C_3(G) \leq 3p-r-8-2\sum_{i=1}^{r} (f_i-3).$$

Moreover, if $p \ge 3 + \sum_{i=1}^{r} (f_i - 2)$ and $r \ge 1$, and if s is any integer such that

(28)
$$2p-4-\sum_{i=1}^{r} (f_i-2) \leq s \leq 3p-r-8-2\sum_{i=1}^{r} (f_i-3),$$

then there exists a 3-connected p-vertex graph G with property $P_1(f_1, f_2, \dots, f_r)$ such that $C_3(G) = s$.

PROOF. The lower bound in (28) was established in Theorem 2.

We will prove the upper bound in (28) by induction on r. It is true for r = 0 by Theorem 1. We will also need to show it is true for r = 1. Suppose therefore that r = 1, and that there exists a 3-connected p-vertex graph G such that

(29)
$$C_3(G) > 3p - 1 - 8 - 2(f_1 - 3) = 3p - 3 - 2f_1,$$

and assume that p is minimal in this regard. We observe that $3p - 3 - 2f_1 \ge \Delta = 2p - 2 - f_1$, if $p \ge f_1 + 1$. To see that $p \ge f_1 + 1$, we note that if $p = f_1$, then it is easily seen that G would have connectivity 2. It follows at once that $C_3(G) > \Delta$, and hence G has a separating 3-cycle, say T = (a, b, c, a). We define G_1 and G_2

[†] Roughly speaking, (27) states that the cycles bounding the faces, $F_i, i \in S$, do not share too many vertices.

as before, and assume G_1 contains the facial cycle of length f_1 . We observe that G_1 and G_2 are both 3-connected, and hence by the assumption that p is minimal, we have $C_3(G_1) \leq 3p_1 - 3 - 2f_1$ and $C_3(G_2) \leq 3p_2 - 8$. These two inequalities yield an inequality which violates (29). We conclude the upper bound in (28) is correct when r = 1.

We now proceed by induction on r. Suppose that $r \ge 2$ is the smallest integer such that there exists a 3-connected p-vertex graph G satisfying $P_1(f_1, f_2, \dots, f_r)$ with

(30)
$$C_3(G) > 3p - r - 8 - 2\sum_{i=1}^r (f_i - 3)_i$$

and with p minimal in this regard. We claim that

(31)
$$3p - r - 8 - 2\sum_{i=1}^{r} (f_i - 3) \ge \Delta = 2p - 4 - \sum_{i=1}^{r} (f_i - 2).$$

But (31) can be rewritten as

(32)
$$p \ge 4 + \sum_{i=1}^{r} (f_i - 3)$$

which is obviously implied by condition (27) when $S = \{1, 2, \dots, r\}$ and $r \ge 2$. From (31), we conclude that G contains a separating 3-cycle, say T = (a, b, c, a). Let G_1 and G_2 be defined as previously. Let $S_1 \cup S_2$ be a partition of $\{1, 2, \dots, r\}$ such that the facial cycles of lengths $\{f_i \mid j \in S_i\}$ belong to G_i . It is easy to see that G_i is 3-connected and satisfies property $P_1(\{f_j \mid j \in S_i\})$. So by the induction hypothesis

$$C_3(G_i) \leq 3p_i - |S_i| - 8 - 2\sum_{j \in S_i} (f_j - 3), \quad \text{for } i = 1, 2.$$

As before, these two inequalities will lead to a contradiction to (30). This establishes the upperbound in (28).

To prove the second part of Theorem 5, we begin by considering the graph G'in Fig. 7. We note that $p' = |V(G')| = \sum_{i=1}^{r} f_i - 2(r-1) + 1$, and consequently $\Delta(G') = \sum_{i=1}^{r} f_i - 2r + 2$. It can be verified that the number of separating 3-cycles in G' is precisely r - k. Therefore, we have

(33)
$$C_3(G') = \sum_{i=1}^r f_i - r - k + 2, \quad \text{where } 1 \le k \le r.$$

We now add $p - p' \ge 0$ vertices to G' in the manner described previously: x of them are added to create two additional 3-cycles each, and the remaining

Fig. 7. Graph G' used in the proof of Theorem 5. The arrow emanating from v_0 indicates the existence of edges between v_0 and all "outer" vertices. If, for example, $f_2 = 4$, then it is assumed that vertices a and b are the same as well as the vertices c and d.

p-p'-x are added to create three additional 3-cycles each. Call the resulting graph G. It is easy to see that G is a 3-connected p-vertex graph with property $P_1(f_1, \dots, f_r)$ with

$$C_{3}(G) = \sum_{i=1}^{r} f_{i} = r - k + 2 + 2x + 3(p - p' - x)$$

(34)

$$= 3p + 5r - 7 - 2\sum_{i=1}^{r} f_i - k - x.$$

We observe that as k varies from 1 to r and x varies from 0 to $p - p' = p - \sum_{i=1}^{r} f_i + 2r - 3$, then $C_3(G)$ can assume any value s such that

$$2p - 4 - \sum_{i=1}^{r} (f_i - 2) \leq s \leq 3p + 5r - 8 - 2 \sum_{i=1}^{r} f_i,$$

as asserted. This completes the proof of Theorem 5.

When r = 1 or 2, Theorem 5 provides complete results. Because if r = 1 condition (27) does not apply and the inequality $p \ge 3 + (f_1 - 2)$ is necessary for 3-connectivity. If r = 2, condition (27) always holds since it is necessary for 3-connectivity; however the hypothesis $p \ge 3 + \sum_{i=1}^{2} (f_i - 2) = f_1 + f_2 - 1$ may not be satisfied. But certainly $p \ge f_1 + f_2 - 2$ by the 3-connectivity of G. If $p = f_1 + f_2 - 2$, then it can be shown that the upper and lower bounds in Theorem 5 are equal yielding $C_3(G) = \Delta(G) = f_1 + f_2 - 4$, and there is a 3-connected planar graph on $f_1 + f_2 - 2$ vertices satisfying $P_1(f_1, f_2)$ having exactly $f_1 + f_2 - 4$ 3-cycles.

When r = 3, there are 3-connected planar graphs for which condition (27) is not fulfilled. An example of such a graph is given in Fig. 8. We also note that this graph does not satisfy the upper bound in (28).

Fig. 8. A 3-connected graph which does not satisfy (27).

4. The range of values of $C_3(G)$

Consider a sequence of integers $f_1 \ge f_2 \ge \cdots \ge f_r \ge 4$, with $r \ge 1$. In this section, we will show that given any integer s between the maximum and minimum values of $C_3(G)$ for p-vertex graphs with property $P(f_1, f_2, \dots, f_r)$, there exists a p-vertex graph G with property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G) = s$. In contrast to this phenomenon, we have the result of Theorem 1 which shows that for maximal planar graphs the complete range of values of $C_3(G)$ is not attainable. In particular, there is no p-vertex maximal planar graph G with $C_3(G) = 3p - 9$.

We begin by showing that the tight lower bound for $C_3(G)$ given in Theorem 2 remains tight if we restrict our attention to 3-connected graphs. More precisely, we have the following lemma.

LEMMA 2. Suppose there exists a p-vertex, 3-connected graph with property $P(f_1, f_2, \dots, f_r)$, with $r \ge 1$. Then there exists a p-vertex, 3-connected graph G with property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G) = \Delta(G) = (2p - 4) - \sum_{i=1}^r (f_i - 2)$.

PROOF. Let G_1 be a *p*-vertex, 3-connected graph with property $P(f_1, f_2, \dots, f_r)$ having the least number of 3-cycles. If $C_3(G_1) = \Delta(G_1)$, the lemma is proved. Hence we assume $C_3(G_1) > \Delta(G_1)$, implying that G_1 contains a separating 3-cycle T = (x, y, z, x).

Consider a plane embedding of G_1 , and let $G'_1 = G_1 - (x, y)$. Let C_{xy} be the cycle bounding the face of G'_1 in which the edge (x, y) originally lay. Since G is 3-connected, it is easily verified that C_{xy} does not pass through z, and that G'_1 is

3-connected. Let $k \ge 4$ denote the length of the cycle C_{xy} . Set $x_0 = x$, and denote the vertices on C_{xy} (in clockwise order) by x_0, x_1, \dots, x_{k-1} , with, say, $y = x_{\alpha}$. For each j such that $0 \le j \le k - 1$, define $G(x_j) = G'_1 + (x_j, x_{j+\alpha})$, where the addition of the indices is in modulo k. We note that for each j, $G(x_j)$ is a p-vertex, 3-connected graph with property $P(f_1, f_2, \dots, f_r)$. The lemma will be proved if we can exhibit a p-vertex, 3-connected graph G_2 with property $P(f_1, f_2, \dots, f_r)$ such that $C_3(G_2) < C_3(G_1)$.

Suppose first that z is not adjacent (in G_1) to all vertices in C_{xy} . Then we claim that there exists an integer $l, 0 \le l \le k - 1$, such that $C_3(G(x_l)) < C_3(G)$ (which would prove the lemma in this case). To prove the claim, suppose otherwise, that is, $C_3(G(x_j)) \ge C_3(G)$, for $j = 0, 1, \dots, k - 1$. This implies that for every integer *j*, the edge $(x_j, x_{j+\alpha})$ belongs to a separating 3-cycle in $G(x_j)$. We begin by considering $G(x_1)$. By the planarity of $G(x_1)$, both x_1 and $x_{1+\alpha}$ must be adjacent to z. Applying this argument recursively, we conclude that z is adjacent to every vertex on C_{xy} , a contradiction. Hence, the lemma is true if z is not adjacent to some vertex on C_{xy} .

Let us assume, therefore, that z is adjacent to every vertex on C_{xy} . If we repeat the above argument with respect to the edge (y, z) in T, we see that the lemma is correct unless x is adjacent to every vertex on C_{yz} . Repeating the argument again for the edge (z, x) in T, we conclude that the lemma is correct unless y is adjacent to every vertex on C_{zx} . Thus the lemma is correct unless x is adjacent to every vertex on C_{xz} , and z is adjacent to every vertex in C_{xy} . It is easily verified that this can only happen if G is the maximal planar graph on five vertices, and hence is impossible if $r \ge 1$. The lemma is proved.

Let \mathscr{G}_k , where k = 2 or 3, denote the set of all *p*-vertex, *k*-connected graphs satisfying property $P(f_1, f_2, \dots, f_r)$. Set $\bar{u}_k(f_1, f_2, \dots, f_r) = \max_{G \in \mathscr{G}_k} C_3(G)$. We then have the following result.

THEOREM 6. Let s be any integer such that

$$2p-4-\sum_{i=1}^{r}(f_i-2) \leq s \leq \bar{u}_k(f_1,f_2,\cdots,f_r),$$

for k = 2, 3. Then there exists a graph $G \in \mathscr{G}_k$ such that $C_3(G) = s$.

PROOF. We have established the theorem when r = 1 (see the corollary to Theorem 3, for k = 2; and the discussion following Theorem 5, for k = 3). Thus we proceed by induction on r.

Let $G \in \mathcal{G}_k$ be such that $C_3(G) = \overline{u}_k(f_1, f_2, \dots, f_r)$. If $C_3(G) =$

 $2p - 4 - \sum_{i=1}^{r} (f_i - 2) = \Delta(G)$, there is nothing to prove. Suppose therefore that $C_3(G) > \Delta(G)$; then G has a separating 3-cycle, say T = (a, b, c, a). As before, let G_1 (resp., G_2) denote the subgraph of G induced by the vertices a, b, and c and all vertices of G in the interior (resp., the exterior) of T. Let G_i have p_i vertices for i = 1, 2, and let $S_1 \cup S_2$ be the partition of $\{1, 2, \dots, r\}$ such that $\{f_i \mid j \in S_i\}$ corresponds to the nontriangular faces of G_i , for i = 1, 2. We must have $C_3(G_i) = \bar{u}_k \{f_i \mid j \in S_i\}$ for i = 1, 2, since otherwise $C_3(G)$ would not be equal to $\bar{u}_k (f_1, \dots, f_r)$. We also note that if G is 3-connected, then so are G_1 and G_2 .

Assume for the moment that both S_1 and S_2 are nonempty. Then by the induction hypothesis, we know that for any two integers s_1, s_2 such that

$$2p_1 - 4 - \sum_{j \in S_i} (f_j - 2) \le s_i \le \bar{u}_k \{f_j \mid j \in S_i\}$$
 for $i = 1, 2,$

there exists a p_i -vertex graph G_i with property $P(f_i | i \in S_i)$ such that $C_3(G_i) = s_i$, for i = 1, 2. Since both of these graphs must have at least one facial 3-cycle, we can "fuse" them together along these 3-cycles to obtain a graph G' with $p = p_1 + p_2 - 3$ vertices, with $C_3(G') = C_3(G_1) + C_3(G_2) - 1$, and satisfying property $P(f_1, f_2, \dots, f_r)$. (We also note that if both G_1 and G_2 are 3-connected, then so is G'.) This immediately implies that for every integer s with 2p - 4 $-\sum_{i=1}^r (f_i - 2) < s \le \overline{u}_k (f_1, f_2, \dots, f_r)$, there exists a graph $G' \in \mathcal{G}_k$ such that $C_3(G') = s$. But we proved the existence of a graph $G'' \in \mathcal{G}_k$ with $C_3(G'') =$ $2p - 4 - \sum_{i=1}^r (f_i - 2)$ in Lemmas 1 and 2. This completes the proof when both S_1 and S_2 are nonempty.

Suppose then that for every separating 3-cycle T in G, either S_1 or S_2 is empty (and hence that G_1 or G_2 , respectively, are maximal planar). Without loss of generality, suppose S_1 is empty and thus G_1 is maximal planar. Since $C_3(G) = \bar{u}_k(f_1, \dots, f_r)$, it follows at once that $C_3(G_1) = 3p_1 - 8$. This implies that G has a vertex v_1 of degree three in the interior of T (see [2]); clearly $C_3(G - v_1) = C_3(G) - 3$. Let G^1 be the p-vertex graph obtained from $G - v_1$ by placing a vertex v'_1 in the interior of the facial cycle of length f_1 and joining v'_1 to three consecutive vertices on the cycle (see (b) in the proof of Lemma 1). Then we have $C_3(G^1) = C_3(G - v_1) + 2 = C_3(G) - 1$. We can continue this process until all $p_1 - 3$ vertices of G in the interior of T are exhausted. In this way, we obtain graphs $G^2, G^3, \dots, G^{p_1-3}$ with $C_3(G^i) = C_3(G) - i$, for $i = 1, 2, \dots, p_1 - 3$. If $C_3(G^{p_1-3}) > 2p - 4 - \sum_{i=1}^r (f_i - 2)$, then G^{p_1-3} must have a separating 3-cycle T_1 . But any separating 3-cycle in G^{p_1-3} must also be a separating 3-cycle in G. Hence the set of all vertices on and in say the exterior of T_1 will induce a maximal planar graph in G^{p_1-3} . We can thus repeat the above argument, and continue repeating it, to obtain a graph $G \in \mathcal{G}_k$ with $C_3(G)$ being any number in the indicated range.

The proof of Theorem 6 is complete.

The results here may be applied to find bounds for the number of triangles in a triangulation of the plane on a given set of points [4].

References

1. B. Grünbaum, Convex Polytopes, Wiley-Interscience, New York, 1967.

2. B. Grünbaum, Polytopes, graphs, and complexes, Bull. Amer. Math. Soc. 76 (1970), 1131-1201.

3. S. L. Hakimi and E. F. Schmeichel, On the number of cycles of length k in a maximal planar graph, J. Graph Theory 3 (1979), 69-86.

4. S. L. Hakimi and E. F. Schmeichel, The number of triangles in a triangulation of a set of points in the plane, Elem. Math. 35 (1980), 137-142.

5. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

6. E. F. Schmeichel and S. L. Hakimi, On planar graphical degree sequences, SIAM J. Appl. Math. 32 (1977), 598-609.

7. H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), 339-362.

NORTHWESTERN UNIVERSITY EVANSTON, IL 60201 USA

SAN JOSÉ STATE UNIVERSITY SAN JOSÉ, CA 95192 USA