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BOUNDS ON THE NUMBER OF CYCLES 
OF LENGTH THREE IN A PLANAR GRAPH t 

BY 

S. L. HAKIMI AND E. F. SCHMEICHEL 

ABSTRACT 

Let G be a p-vertex planar graph having a representation in the plane with 
nontriangular faces F~, F2 ," - ,  F,. Let fl, f2,'" ", f, denote the lengths of the 
cycles bounding the faces F1, F2,' • ', F, respectively. Let C3(G) be the number 
of cycles of length three in G. We give bounds on C3(G) in terms of 
P, f ,  [z,' • ", f,- When G is 3-connected these bounds are bounds for the number 
of triangles in a polyhedron. We also show that all possible values of C3(G) 
between the maximum and minimum value are actually achieved. 

1. Introduction 

Our terminology and notation will be standard throughout this paper. A good 
reference for undefined terms is [5]. 

Let G be a planar graph without loops or multiple edges. Denote the set of 
vertices of G by V ( G )  and the set of edges of G by E ( G ) ,  with p = I V(G)I and 
q = I E ( G ) I .  Let C3(G) denote the number of cycles of length three (for brevity, 
3-cycles) in G. In a previous paper [3], the authors proved the following result. 

THEOREM 1. Let G be a maximal planar graph on p >= 6 vertices. Then 

2p - 4  <-< _ C3(G) <=3p - 8 .  

Moreover, for every integer s ~  3p - 9 such that 2p - 4 <= s < 3p - 8, there exists a 

p-vertex maximal planar graph G with C3(G) = s. There does not exist a p-vertex 

maximal planar graph G with C3(G)= 3 p -  9. 

The purpose of this paper is to give bounds for C3(G) when G is a planar 
(though not necessarily maximal planar) graph with vertex connectivity _-> 2. If 
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such a graph is embedded in the plane, we will call the cycles which bound the 

faces the facial cycles of this embedding, while all remaining cycles will be called 

the nonfacial (or separating) cycles of the embedding. Let f~ => f2 => "" • --> fr => 4 

be a sequence of integers. We will say that a graph G satisfies property 

P(f~, f2,'" ", fr), if G is 2-connected planar, and if G has an embedding in the 

plane with exactly r facial cycles which are not 3-cycles, and the lengths of these r 

facial cycles are f~, f2,'" ", f,. In the following section, we give bounds for C3(G) if 

G has property P(f~, f2,'" ", fi). We then give tighter bounds for C3(G) under the 

additional assumption that G is 3-connected. In the final section, we establish 

that, in contrast to the situation for maximal planar graphs, all possible values of 

C3(G) between the maximum and minimum value are actually achieved for 

some p-vertex graph with property e(f~,f2,'" ",f,). 

2. Basic results 

We begin with some preliminary observations. Let G be a p-vertex graph with 

property P(f~,f2,'" ",fr) so that in the corresponding embedding there are A 

facial 3-cycles. It follows at once by Euler's formula that A + r = I E ( G ) I -  p + 2. 

Since each edge of G belongs to exactly two facial cycles, we have 21E(G)I  = 

3A + ET=lfi. From these two equalities, we obtain 

(1) A = 2 p - 4 + 2 r - ~  = 2 p - 4 - ~ ( f ~ - 2 )  
i = 1  i = 1  

and 

(2) IE(G)I = 3 p - 6 + 3 r -  ~/~ : 3 p - 6 -  ~ (fi -3). 
i = 1  i = l  

We now prove the following. 

LEMMA 1. Let fl >- f2 >="" >= fr >= 4 be a sequence of integers. Then there exists 
a p-vertex graph G satisfying property P(ft, f2,'" ", f,) if and only if p >= f~ and 
2p - 4 - E 7 = 1  ~ -2)=> 0. Moreover, in that case G can be constructed so that G 
contains no separating 3-cycles. 

REMARK. It is worth noting that in its dual form this lemma becomes the 

problem of realizing a sequence of integers as the vertex degrees of a planar, 

2-connected, 3-edge-connected multigraph G'. Moreover, each 3-edge-cut in G' 
must consist of the edges incident at a degree three vertex. The difficulty in the 

proof here is primarily due to the above connectivity requirements. 
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PROOF. If G satisfies property P(fl,f:,'" ",f,), then by (1) we have 2 p - 4  

- ET=~ (fi - 2) = A _--- 0. Also, since G is 2-connected, the facial cycles are simple 

cycles and consequently p -> fl. This proves the necessity. 

To prove the sufficiency, we proceed as follows. Let j =< r be the largest integer 

such that fl + E~=2 (f~ -2)=< p. Since p > fl, it is clear that j _-> 1. Consider the 

graph G '  shown in Fig. 1, where the face F~ is bounded by a cycle of length f~, for 

i = 1, 2 , . -  -, j, and p' = f1 + E~=2 (f~ - 2). 

.. Vp' vf, ""o... .... 

v2 

Fig. 1. Graph constructed in the proof of Lemma 1. 

If j = r, we obtain the desired graph G from G '  in two steps as follows: 

(a) Consider the exterior face of G '  bounded by the cycle C'= 
(vl, v2,- '- ,  vp,, vl). We wish to triangulate this exterior face such that no 

separating 3-cycles are created in the process. It is easy to see that this can be 

done unless there exists a vertex u which is adjacent to every vertex v of C'  

(with v ~ u if u is on C'). Since no such vertex u exists, the desired triangulation 

can be accomplished. 

Let G[ denote the graph which results when (a) is completed. Then the facial 

cycles of G~ which are not 3-cycles have precisely the lengths fl, f2,'" ",f,. 
Moreover G '1 has p '  ~ p vertices, and is 2-connected with no separating 3-cycles. 

Hence, if p ' =  p, G[ itself is the graph we seek. Assuming p'<p, we can 

construct the desired graph G from G'z, by adding p - p '  vertices to G[ as 

follows: 

(b) Select any facial cycle C in G~ having length l > 4. Let x, y, z be any 

three consecutive vertices on C such that (x, z) is not an edge in G]. (It is easily 

seen that such a choice is always possible.) Add vertex v,,+1 inside C and join 
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vp,+~ to x, y, and z. The resulting ( p ' +  1)-vertex graph has no separating 3-cycles, 

and satisfies property P([~, f2," • ", f , ) .  If p '  + 1 < p, repeat the above construction 

until we obtain a p-vertex graph with no separating 3-cycles having property 

P ( f , , f 2 , ' "  ", f ,) .  
This completes the proof if j = r. 

Suppose then that j < r. We begin by modifying the graph G '  in Fig. 1 as 

shown in Fig. 2, where the face Fj+~ is created by the addition of p - p '  vertices 

forming a path from vp, to Vp together with an edge (vp, v~) such that the length of 

the cycle bounding Fj÷~ is )~+~. This immediately implies that a = 

fj÷~ + p ' - p -  1 => 2. Denote  the resulting graph by G". We see that G" is a 

2-connected, p-vertex graph having facial cycles of lengths fl, f2, '" ", fj÷~, with the 

exterior face bounded by a cycle C of length p - a + 1 = 2p - 2 - Ei+_-'l ~ - 2). 

This implies that 

1+I 

(3) a = ~'~ ~ - 2 ) - p + 3 .  
i=I 

. , . . - . O - . , , ,  F/" 
Fj÷I "X~" 

v ~  ~Vp'" Vp'*I 

Fig. 2. Graph constructed in the proof of Lemma 1. 

We now form facial cycles of lengths 1~÷2,~+3,'",f, by adding edges 

(v~,v,j.2),(v~,v,,.3), '",(vo, v,,) in the exterior of C, where ak = 

(a + 1) + E~=j+2 (ft - 2), .for k = j + 2, j + 3 , . . . ,  r. We observe that facial cycles of 

all desired lengths will be present if a + 1 + X;=j+2 (fi - 2) -<_ p. This inequality, 

however, is implied by the hypothesis and (3). Finally, we note that if 
(a + 1)+X;=j÷2(f t -2)  = a, < p, then there remains an unwanted facial cycle 

(Va, Va,, V, .... "" ", Vp, Vo) of length > 3 which can be triangulated without forming a 



Vol. 41, 1982 CYCLES IN A PLANAR GRAPH 165 

separating 3-cycle as in (a) above. This yields the desired graph, and completes 

the proof of Lemma 1. 

We now begin considering bounds for C3(G). The following theorem gives a 

tight lower bound for C3(G). 

THEOREM 2. Let G be a p-vertex graph having property P(fl, f2, " " ", f,). Then 

C3(G) ~ (2p - 4) - ~ @ - 2). 
i = I  

Furthermore, there exists a p-vertex graph G satisfying property P(fl, [2,'" ", f,) for 
which C3(G) = (2p - 4) - E~=~ ~ - 2). 

PROOF. By (1), the number of facial 3-cycles in G is equal to ( 2 p - 4 )  

- Z;=~ @ - 2), and so C3(G) => (2p - 4) - E~=~ {f - 2). The existence of a p-vertex 

graph G with property P(f~, fz,'" ", f~) for which C3(G) = (2p - 4) - E~=~ @ - 2) 

is implied by Lemma 1. This completes the proof of Theorem 2. 

In the remainder of this paper, we will concentrate on giving upper bounds for 

C3(G), and determining the quality of these bounds. We begin with the 

following theorem. 

THEOREM 3. Let G be a p-vertex graph with property P(fz, f2,'" ",f,). Assume 

f,>=f2>=.'.>=f,. Set 

U P ( f ~ ' f 2 ' ' ' " f ' ) = m i n { 3 p + 4 r - 8 - [ 3 ~ l ' 3 p + 2 r - 4 - f ~ - ~ }  ,~i 

Then 

(i) C3(G)= < U~(fl, f2,...,f,). 
(ii) There exists a p-vertex graph G' with property P(f~, f2,"" ", if,) such that: in 

1 r case f~>=3-r + L~Y.,~J ,  then 

C3(G) --- U,(/ , , f~ , . . . , f , ) ,  

a n d / f f ~ < 3 - r +  [½E:=,f~J, then 

C3(G) = > Up(f,,fz," .,f,)-(r- I). 

(iii) If f~>3-r+ [~E[=if,], then Upff~,f2," .,f,)=3p+2r-4-f~-~,[~f, 
and for every integer s with (2p-4)-E~z~-2) < s <-_ Up(f~,f2," ",f,), there 
exists a p-vertex graph G with property P(f~,f2,'" ",f,) such that C3(G)= s. 

REMARK. The upperbound Up(f~,f2," ",f,) does not seem tight when f~ < 

3-r + [~2:[.~f~]. Also note that when f~ _-> 3-r + [½~;-l];J, C3(G) can be any 

number in the possible range, in contrast to the result of Theorem I. 
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PROOF. (i) We first show that C3(G)<--_3p+4r-8-[~ET=~[,I. Since all 

variables involved in the inequality are integers, it suffices to show instead that 

- 8 - ~ Y.~=~ ~. When r = 0, this inequality follows by Theorem 1. c 3 ( a )  -<~ 3p + 4r 3 , 

We therefore proceed by induction on r. 

Suppose therefore that r => 1 is the smallest integer such that there exists a 

p-vertex graph G having property P(/1, f2, '" ", f,) with 

(4) 
3 ~ / i .  C3(G)>3p +4r  - 8 - ~  ,=~ 

We may also assume that p is minimal in this regard. We begin by showing that 

(5) 3± 
3p + 4r - 8 - ~ ~ => A = (2p -- 4) - @ - 2). 

i = 1  i = 1  

We may rewrite (5) as 

(6) p + 2 r - 4 -  ~ _->0. 

Since A = (2p - 4) - ET=I (fi - 2) => 0, we have 

(7) 

Obviously (7) implies the validity of (6) if r _-> 2. We note that r _-> 1 and if r = 1, 

(6) can be rewritten as p - 2 - ½fl => 0, which is true since p => fl => 4. This proves 

the validity of (5). 

From (4) and (5) we conclude that C3(G) > A. This implies that G has at least 

one separating 3-cycle in this embedding, say T = (a, b, c, a). Let G~ (resp., G2) 

denote the subgraph of G induced by the vertices a, b, c and all vertices of G in 

the interior (resp, exterior) of T. Note that G1 and G2 share only the 3-cycle T, 

and that each facial cycle of G belongs to either G~ or G2. Let $1 tO $2 be a 

partition of {1, 2 , . . . ,  r} into sets (one of which may be empty) such that facial 

cycles of lengths {~ I1 E S;} belong to G~, for i = 1, 2. Let pl and p2( < p) be the 

number of vertices of G~ and G2, respectively. Then by the induction hypothesis 

(and minimality of p) 

(8) 3 C3(G,) 3p, +41S, 

for i = 1, 2. 

Clearly p = pl + p~-  3 and C 3 ( G )  = C3(G,) + Ca(G2) - 1. Adding the equa- 

tions in (8) for i = 1, 2, and making use of the last two equalities, we obtain 
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' 2  r 

C3(G)<=3(p~ + p2) + 4r - 1 6 -  2 ~ 1 I (9) 

o r  

(10) C3(G) =< 3p + 4r - 8 -  ~ ,=1 " 

This contradicts (4), however. We conclude therefore that indeed 

3 ' 
(11) C3(G) =< 3p + 4r - 8 - ~ ~ f, 

as desired. 

We next want to prove that 

(12) C3(G) =< 3p + 2r - 4 - f~ - ~ 
i = l  

when r => 1. 

We begin by proving (12) when r = 1; which is, that C3(G)<-_3p-2-2/~. 
Suppose otherwise. Let G be a p-vertex graph (with p minimal) having property 

P([1) such that 

(13) C3(G) > 3p - 2 - 2f,. 

Using analogous reasoning as in the first part of the proof, we can prove that G 

has a separating 3-cycle T = (a, b, c, a). Let G1 and G2 be defined as above. We 

may assume, without loss of generality, that G1 contains the facial cycle of size f~, 

and that G2 is maximal planar. Then 

C3(G1) = C a ( G )  - C3(G2) + 1 > 3p - 2 - 2[i - (3p2 - 8), 

or  

(14) C3(G1) > 3pl - 2 - 2fl. 

But this violates the minimality of p. We have thus proved (12) when r = 1. 

We proceed therefore by induction on r. Assume that r > 1 is the smallest 

integer such that there exists a p-vertex graph G with property P( / t , [2 , - .  ", f,) 

with 

-± (15) C3(G) > 3p + 2r - 4 - [1 
i - I  

and assume moreover  that p is minimal in this regard. It is easily seen that 

3p + 2r - 4 - [z - E7-I ~ => A, and hence G contains a separating 3-cycle, say 
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T = (a, b, c, a). Define subgraphs GI, G2 of G as before, and suppose without 
loss of generality that GI has a facial cycle of length f,. If G2 is maximal planar, 
then C3(G2) < 3p2-8. This fact together with (15) yields 

C3(G1) = C3(G) - C3(G2) + 1 > 3p + 2r - 4 - [1 - ~ - (3p2 - 8) + 1, 

o r  

C3(G,) > 3p, + 2r - 4 - f, - ~ )~. 
i = l  

This violates the minimality of p. Hence we may assume that G2 contains at least 
one facial cycle of length => 4. Let $1 U S2 be a partition of {1,2, . . . ,  r} into 
nonempty sets such that facial cycles of lengths {~ IJ ~ S,} belong to G~, for 
i = 1, 2. By the induction hypothesis, we have 

(16) C3(G1)<-_3p1+21S11-4-fl - ~ f, 

and 

(17) C3(G2)<=3p2+ 2 l S 2 l - 4 - m a x  ~ -  ~, [j. 
JE$2 jE$2 

Add ing  (16) and (17), and using the fact that m a x s E ~  _ 4 ,  we obtain 

C3(G) = C3(G,) + C3(G2) - 1 _-< 3(p, + p2) + 2r - 12 - f, - ~ ~ - 1 
i = l  

= 3p + 2r - 4 -  [, - ~., [,. 

This contradicts (15), and establishes the validity of (12). The proof of (i) is now 
complete. 

(ii) Let po be the smallest positive integer such that po>-_fl and 
2po + 2r - 4 - E;=1 )~ => 1. Then* 

(18) po = max {fl, [~ ( 5 - 2 r +  ~ )~)]} =max { f l , 3 - r  + [~ ~ ~]} .  

So by Lemma 1, there exists a graph Go with p%v~rtices with property 
p ffl, [2,'" ",.f,) such that C3(Go)= 2po+ 2 r -  4-E;=I  1~ = A and A => 1. We then 
construct G from Go by recursively adding p -  po vertices in the interior of a 

t If p o > p ,  then 2 p + 2 r - 4 - E ; _ l ~  = 0  and ] ' 1 < 3 - r +  L½E;-,L]. Part (ii) of Theorem 3 is 
trivially correct as U~ (fl, [2, '" ', ]',) - (r - 1) < 0. Therefore, it is assumed that Po < P. 
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facial 3-cycle, and joining each vertex to the three vertices incident to the face. 

Note that the addition of each such vertex creates three additional 3-cycles. As a 

result, C 3 ( G )  = Ca(Go) + 3(p - po), or 

r 

(19) C3(G) = 3p - po + 2r - 4 - ~ .~. 
i l l  

| r If [i >= 3 - r + [~ E, =i ~ J, then, by (18), po = [~ and C3(G) = 
1 • 3p + 2r - 4 -  f~ - ET=~ ]]. If on the other hand [1 < 3 - r + [~ E,=~)~ J, then po = 

3-r+[~Y. ,=~.~J ,  and so by (19) w e h a v e  C 3 ( G ) = 3 p + 3 r - 7  - t 2  ,=l~J. We 

summarize this as follows: 

(20) 
C3(G) = { 3p + 3r - 7 - [~ , 

3p + 2 r - 4 - [ ~ - ~  ~; 

It is easily seen that if / ~ < 3 - r + [ ~ E ~ = l / , J ,  then Up ( f  ~, [2, . . ., [, ) <- _ 
3p + 4r - 8 - [3 ET=l f, ], and consequently C3(G) => Up (fl, [2,'" ", jfr) - (r - 1). On 

the other hand, if [~ => 3 -  r + [½ Z7=I/~J, then Up (/~, f2, • • ",It) = 

3p + 2 r - 4 -  fa-Y.7=~, and consequently Up(f~, f2,"  " , f , )=  C3(G). This com- 

pletes the proof of (ii). 
(iii) Suppose that ,fl --> 3 - r + [½ Y.Tffi~ fi J. We have already established that if G 

is a p-vertex graph with property P(f~,[2,'" ",[~), then 

(21) 2 p - 4 -  ~ ~ -2)_- < C3(G)<=3p +2r-4-f~- ~ ~. 

We now show that for any integer s in the range implied by (21), there exists a 

p-vertex graph G having property P(f1,[2, '" ",[r) such that C3(G)=  s. 

Since f~_->3-r + [½Y~7=~J, (18) implies that [1 = po. So by Lemma 1, a 

po-vertex graph Go can be constructed for which G(Go)  = 2po + 2r - 4 - ET=~ j~ = 

A => 1. To construct G from Go, we add p - po vertices to Go as follows: Let 
0<= x <='p -po .  We add x vertices to Go in the manner described in Lemma 1 

(i.e., each vertex is placed in the interior of a facial cycle of length _>- 4, and then 

joined to three consecutive vertices on the cycle). Once again, this can be 

accomplished without creating separating 3-cycles. Once these x vertices are 

added, the resulting (po+ x)-vertex graph G1 satisfies property POOl, f2, "" " , f , )  

and contains G ( G o ) +  2x 3-cycles. Next, we add p -  p o - x  vertices to G1 by 

recursively placing a vertex in the interior of a facial 3-cycle and joining this 

vertex to the three vertices incident to the 3-cycle. The resulting graph G is a 
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p-ver tex  graph with p roper ty  P(ft,]:2,'",]:,), and also C 3 ( G ) =  

C3(Go) + 2x + 3(p - po - x) ,  or 

(22) Ca(G) = 3p - po - x + 2r - 4 - ~ ~. 
i = l  

Since x was any integer  such that 0 =< x =< p - p o ,  it follows that  C3(G) can 

assume any value f rom 2p + 2r - 4 - X;=~ ~ to 3p -/9o + 2r - 4 -  X~=1 [~. Not ing  

that po = fi, we have the desired result. 

The  proof  of T h e o r e m  3 is complete .  

We now wish to show that T h e o r e m  3 provides nearly comple te  results when 

r = 1 or 2. More  precisely, we have the following result. 

COROLLARY. Let G be a p-vertex graph satisfying property P(f~,]:2, '" ",]:,). 

Assume ]:1 >= ]:2 >-""  >= ]:r, and 1 ~ r <= 2, with ]:1 > ]:2 if r = 2. Then 

2 p - 4 -  ~ ~ -2)_-- < C3(G)=3p +2r-4-]:~- ~ ~. 
i = l  i=1  

Moreover ]:or every integer s in the range indicated above, there exists a p-vertex 

graph G satis]:ying property P(f~, ]:2,'" ", ]:,) such that C 3 ( G ) =  s. 

PROOF. The  validity of the bounds  are established in T h e o r e m  3. T o  prove  

the second part  of the corollary,  no te  that if r = 1, then,  since fl --> 3 -  1 + [-~fxJ, 

T h e o r e m  3 (iii) gives the desired result. Also if r = 2 and fl =>]:2+ 1, then 

i"1 --> 3 - 2 + [½(fl + f2)J, and by T h e o r e m  3 (iii), the corol lary follows. 

We noted  that  the upper  bound  for C3(G) in T h e o r e m  3 is not  uniformly tight 

when fl < 3 - r + [½ E7=1/~ J. Nevertheless ,  there  are graphs for  which this upper  

bound  is achieved.  For  instance, let p = 9, r = 5, f~ = 5, a n d / 2  = f3 = f4 = f5 = 4. 

No te  that then U9(5, 4, 4, 4, 4) = 7. We observe  that the graph G of Fig. 3 satisfies 

p roper ty  P(5, 4, 4 ,4 ,4 )  and has C 3 ( G ) =  7. Such occurrences  where  the upper  

bound  is a t ta ined,  though not  unique,  are by no means  c o m m o n  either.  In fact, 

they probably  can occur  e i ther  when ]:2 = f l -  1, and [3 = ]:4 . . . . .  f, = 4, or  

when p > r + 2 and f~ = [2 . . . . .  ]:, = 4. On  the o ther  hand,  let p = 23, r - 10, 

Fig. 3. A graph which achieves the upperbound in Theorem 3. 
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/1 = 16, f2 = 8, and f3 = f4 . . . . .  f,o = 6. Note that U33(16, 8, 6, 6 , ' - . ,  6) = 
min{23, 27} = 23. The 33-vertex graph G shown in Fig. 4 is a 2-connected, has the 
appropriate facial structure, and is believed to have the largest possible number 
of 3-cycles subject to these restrictions and yet C3(G)= 17. It should be noted, 

however, that C3(G) still differs from /../33(16, 8, 6, ' '  ", 6) by less than the quantity 
r -  1 = 9 as predicted in Theorem 3. The essential difficulty in finding an 

achievable upperbound stems from our inability to control the number of 

separating 3-cycles in the po-vertex graph that is constructed, where p0 is given by 

(18). 

Fig. 4. A graph which is believed to have the largest number of 3-cycles and yet does not achieve the 
bound of Theorem 3. 

3. Bounds on C3(G) when G is 3-connected 

In a planar graph G with connectivity 2 (such as the graphs in Figs. 3 and 4), 

the lengths of the facial cycles depend on the particular embedding of the graph 

G in the plane. On the other hand, it is known (see [5, p. 105], [7]) that if a planar 

graph G has connectivity ->_ 3, then G has a unique embedding in the plane, and 

hence the lengths of the facial cycles are uniquely determined. Moreover, it is 

known (see [1, 2]) that a graph G will be the 1-skeleton of a polyhedron if and 
only if G is 3-connected and planar. This means that the study of the number of 

3-cycles in polyhedra is equivalent to studying the number of 3-cycles in 
3-connected planar graphs. 

To begin with, let us consider again the 33-vertex graph G in Fig. 4. Note that 

C3(G) = 17. By way of contrast, we exhibit in Fig. 5 a 3-connected, 33-vertex 

planar graph G' whose facial cycle lengths are exactly the same as those in G, 

but with C3(G') = 11. Our next result shows that G' has the maximum number of 
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Fig. 5. A 3-connected graph with the same facial cycles and number of vertices as the graph of Fig. 4. 

3-cycles among all 3-connected, 33-vertex planar graphs with this facial cycle 

length. 

THEOREM 4. Let 

P(fI,[2," ",[,). Then 

(23) 

G be a 3-connected, p-vertex graph with property 

]. 
PROOF. The inequality is true if r = 0 by Theorem 1, and so we proceed by 

induction. Suppose then that r _>- 1 is smallest integer such that there exists a 

3-connected, p-vertex planar graph G having property P([1,[2,'" ",[,) with 

(24) C3(G) > 3p + 4r - 8 - , 

and with p minimal in this regard. 

We wish to show first that G contains a separating triangle. To  do this, we 

need to show that 

which can be rewritten as 

=>A=2p+2r-4 -~ ,  
i = 1  

(25) 3p +6r- 12-2. ~/ ,  =>0. 
i = l  
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Since each vertex of G has degree at least three, we have 

(26) 21E(G)I = ~ ~ + 3A > 3p. 
i = l  

Substituting 2p + 2 r -  4-ET~lf, for A in (26) yields (25). 

If we denote the separating 3-cycle by T = (a, b, c, a) and define G1 and G2 as 

before, it is easy to see that as G is 3-connected so are G1 and G2, and hence G1 

and G2 satisfy the appropriate inequality (23). Arguing now as we have a number 

of times previously, we would obtain an inequality contradicting (24). 

This completes the proof of Theorem 4. 
We have observed that the graph in Fig. 5 achieves the upperbound given in 

Theorem 4. However, in general this bound does not seem tight. For example, if 
G is a 3-connected, 9-vertex planar graph with property P(5, 4, 4, 4, 4), then (23) 

suggests that C3(G)=< 4. In fact, it seems that such a graph will actually satisfy 

C3(G) < 3, with equality occurring, for example, in the graph of Fig. 6. 

Fig. 6. A 3-connected 9-vertex planar graph with property P(5, 4, 4, 4, 4) which is believed to have the 
largest number of 3-cycles. 

We observe that the problem of determining when there exists a p-vertex 

3-connected planar graph G with property P(fl, f2,'" ",f,), regardless of the 
number of separating 3-cycles (G must always contain A = 2p - 4 - ET~ ~ - 2) 
facial 3-cycles), is equivalent to a singularly difficult problem in graph theory. To 

see why, note that the dual of G would be a 3-connected planar graph G~ with 

vertex degree sequence fl, f2," ",f, 3,. . . ,3. Moreover, as p varies A will take 
,a 

on all nonnegative odd or even integer values (depending on the parity of 

E~I.~). Thus we see that knowing when the graph G exists is equivalent in 

general to knowing when a sequence of integers is the degree sequence of a 

planar graph without multiple edges. It is known (see [6]) that this problem is 

exceedingly difficult. This problem is of course much easier if we allow the 

realization to be a multigraph; in fact, the solution to that problem (in dual form) 
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is precisely the result of Lemma 1. On the other hand, neither the result of 

Lemma 1 nor a complete solution to the planar degree sequence problem in full 

generality (if it were possible) would completely settle the problem of finding 

tight bounds for C3(G), since we still would have no way of determining or 

controlling the number of separating 3-cycles in G. 

We now give a still tighter bound for C3(G) than the bound in Theorem 4 

when G is a 3-connected planar graph with an additional restriction. A p-vertex 

graph G is said to satisfy property P~(fl, f2 , ' '  ", f,) if (1) G satisfies P(f~, f2, '" ", f,) 

and (2) if V~ is the set of vertices on the facial cycle of length .~, bounding the face 

E ,  then for every subset S C {1, 2,. •., r} of cardinality->_ 2, we have t 

I r 4+ 
We now prove the following. 

THEOREM 5. Let G be a 3-connected p-vertex graph with property 

P~(f~,f2,'",f,). Then 

2 p - 4 -  L ~ - 2 )  --< C3(G)<-3P - r - 8 - 2  ~J, ~ -3 ) .  
i = 1  i = 1  

Moreover, if p = 3 + E~=l @ - 2) and r > 1, and if s is any integer such that 

(28) 2 p - 4 - ~ - 2 ) < = s < - 3 p - r - 8 - 2 ~ @ - 3 ) ,  
iffil i = l  

then there exists a 3-connected p-vertex graph G with property Pl(fa, [2,'" ", [,) such 
that C3(G) = s. 

PROOF. The lower bound in (28) was established in Theorem 2. 

We will prove the upper bound in (28) by induction on r. It is true for r = 0 by 

Theorem 1. We will also need to show it is true for r = 1. Suppose therefore that 

r = 1, and that there exists a 3-connected p-vertex graph G such that 

(29) C3(G) > 3p - 1 - 8 - 2(f1 --  3) = 3p - 3 - 2fl, 

and assume that p is minimal in this regard. We observe that 3p - 3 - 2fl => A = 

2p - 2 - fl, iI p -> fl + 1. To see that p _-> fa + 1, we note that if p = fa, then it is 

easily seen that G would have connectivity 2. It follows at once that C3(G) > A, 
and hence G has a separating 3-cycle, say T = (a, b, c, a). We define G~ and G2 

* Roughly speaking, (27) states that the cycles bounding the faces, F~, i • S, do not share too 
many vertices. 
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as before, and assume G~ contains the facial cycle of length f~. We observe that 

G~ and G2 are both 3-connected, and hence by the assumption that p is minimal, 

we have C3(G0 < 3p~ - 3 - 2f~ and C3(G2) < 3p2 - 8. These two inequalities yield 
an inequality which violates (29). We conclude the upper bound in (28) is correct 

when r = 1. 

We now proceed by induction on r. Suppose that r => 2 is the smallest integer 

such that there exists a 3-connected p-vertex graph G satisfying P~(f~, [2,'" ", f,) 
with 

(30) Ca(G) > 3p - r - 8 - 2 2 ~ - 3), 

and with p minimal in this regard. We claim that 

(31) 3 p - r - 8 - 2 2 ( f ~ - 3 ) > = A = 2 p - 4 - 2 ~ - 2 ) .  
i = l  i = l  

But (31) can be rewritten as 

(32) p => 4 + 2 (f~ - 3) 
i = l  

which is obviously implied by condition (27) when S = {1 ,2 , . . . ,  r} and r => 2. 

From (31), we conclude that G contains a separating 3-cycle, say T = (a, b, c, a). 

Let G~ and G2 be defined as previously. Let SI t3 $2 be a partition of {1, 2 , . . . ,  r} 

such that the facial cycles of lengths {fj I J E Si} belong to Gi. It is easy to see that 

G~ is 3-connected and satisfies property Pl({fj I] E S~}). So by the induction 

hypothesis 

3p,-Is, l-8-2 E 
jES~ 

for i = 1, 2. 

As before, these two inequalities will lead to a contradiction to (30). This 

establishes the upperbound in (28). 
To prove the second part of Theorem 5, we begin by considering the graph G '  

in Fig. 7. We note that p ' =  I V(G')J = E ~ = I ) ~ - 2 ( r - 1 ) +  1, and consequently 

A(G') = E;=1 ~ - 2r + 2. It can be verified that the number of separating 3-cycles 

in G '  is precisely r - k. Therefore, we have 

(33)  C 3 ( G ' )  = 2 / ~  - r - k + 2, w h e r e  1 _<- k < r. 
i z l  

We now add p - p ' = >  0 vertices to G '  in the manner described previously: x of 

them are added to create two additional 3-cycles each, and the remaining 
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I VO 
to  a l l  

a b 

kF:..k.i:k " 
c d 

Fig. 7. Graph G '  used in the proof of Theorem 5. The arrow emanating from v0 indicates the 
existence of edges between o0 and all "outer"  vertices. If, for example, [2 = 4, then it is assumed that 
vertices a and b are the same as well as the vertices c and d. 

p - p '  - x are added to create three additional 3-cycles each. Call the resulting 

graph G. It is easy to see that G is a 3-connected p-vertex graph with property 

PI(/,, • •., [,) with 

(34) 

C3(G)= ~ . ~  = r -  k + 2 + 2 x  + 3 ( p - p ' - x )  
i = I  

= 3 p + 5 r - 7 - 2  ~ - k - x .  
i = I  

We observe that as k varies from 1 to r and x varies from 0 to p - p ' =  

p -Y-7=z ~ + 2 r -  3, then C3(G) can assume any value s such that 

2 p - 4 -  ~ (fi-2)=<s=<3p +5r-8-2 ~./~, 
i = l  i = l  

as asserted. This completes the proof of Theorem 5. 

When r = 1 or 2, Theorem 5 provides complete results. Because if r = 1 

condition (27) does not apply and the inequality p => 3 + (fl - 2) is necessary for 

3-connectivity. If r = 2, condition (27) always holds since it is necessary for 

3-connectivity; however the hypothesis p => 3 + E~=1 (fi - 2) = fl + [2 - 1 may not 

be satisfied. But certainly p = f ~ + f 2 - 2  by the 3-connectivity of G. If p = 

fl + f2 - 2, then it can be shown that the upper and lower bounds in Theorem 5 

are equal yielding C3(G) = A(G) = f~ + [2 - 4, and there is a 3-connected planar 

graph on jf~ + .f2 - 2 vertices satisfying P~(/~, f2) having exactly fl + jr2 - 4 3-cycles. 

When r = 3, there are 3-connected planar graphs for which condition (27) is 

not fulfilled. An example of such a graph is given in Fig. 8. We also note that this 

graph does not satisfy the upper bound in (28). 
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Fig. 8. A 3-connected graph which does not satisfy (27). 

4. The range of values of C3(G) 

Consider a sequence of integers [, >/2  > . . .  > [ ,  >4 ,  with r_-> 1. In this 

section, we will show that given any integer s between the maximum and 

minimum values of C3(G) for p-vertex graphs with property P(f, ,f2, '" ", [,), 

there exists a p-vertex graph G with property P(fl, [2,'" ", [,) such that C3(G) = 

s. In contrast to this phenomenon, we have the result of Theorem 1 which shows 

that for maximal planar graphs the complete range of values of C3(G) is not 

attainable. In particular, there is no p-vertex maximal planar graph G with 

C3(G) = 3p - 9. 
We begin by showing that the tight lower bound for C3(G) given in Theorem 2 

remains tight if we restrict our attention to 3-connected graphs. More precisely, 

we have the following lemma. 

LEMMA 2. Suppose there exists a p-vertex, 3-connected graph with property 

P(fl , f2, '" ",[,), with r >= 1. Then there exists a p-vertex, 3-connected graph G with 

property P(f~, f2,'" ", f,) such that C3(G) = A(G) = (2p - 4) - ~=,  ~ - 2). 

PROOF. Let G~ be a p-vertex, 3-connected graph with property 

P(f~, f2,'" ", f,) having the least number.of 3-cycles. If C3(G1) = A(G0, the lemma 

is proved. Hence we assume C3(G0> A(G0, implying that G~ contains a 

separating 3-cycle T = (x, y, z, x). 

Consider a plane embedding of G1, and let G~ = G~ - (x, y). Let Cxy be the 

cycle bounding the face of G I in which the edge (x, y) originally lay. Since G is 

3-connected, it is easily verified that Cxy does not pass through z, and that GI is 
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3-connected. Let k = 4 denote the length of the cycle C~y. Set xo = x, and denote 

the vertices on Cxy (in clockwise order) by xo, x~,.- . ,  x~_l, with, say, y = xo. For 

each j such that 0 =< / =< k - 1, define G(x,) = G~ + (x,, xj+~), where the addition 

of the indices is in modulo k. We note that for each j, G(xj) is a p-vertex, 

3-connected graph with property P(f~,/2, '" ", [,). The lemma will be proved if we 

can exhibit a p-vertex, 3-connected graph G2 with property P(/z, [2,'" ", f,) such 

that C3(G2)< C3(G1). 

Suppose first that z is not adjacent (in G~) to all vertices in C~y. Then we claim 

that there exists an integer l, 0 =< l =< k - 1, such that C3(G(x,))< C3(G) (which 

would prove the lemma in this case). To prove the claim, suppose otherwise, that 

is, C3(G(xj))>= C3(G), f o r / =  0, 1 , . . . ,  k - 1. This implies that for every integer j, 

the edge (x~,xi+,) belongs to a separating 3-cycle in G(xi). We begin by 

considering G(xO. By the planarity of G(xl), both xl and xl+, must be adjacent 

to z. Applying this argument recursively, we conclude that z is adjacent to every 

vertex on C~y, a contradiction. Hence, the lemma is true if z is not adjacent to 

some vertex on Cxy. 

Let us assume, therefore, that z is adjacent to every vertex on Cxy. If we 

repeat the above argument with respect to the edge (y, z) in T, we see that the 

lemma is correct unless x is adjacent to every vertex on Cry. Repeating the 

argument again for the edge (z, x) in T, we conclude that the lemma is correct 

unless y is adjacent to every vertex on C,x. Thus the lemma is correct unless x is 

adjacent to all vertices in Q, ,  y is adjacent to every vertex in C~, and z is 

adjacent to every vertex in C~y. It is easily verified that this can only happen if G 

is the maximal planar graph on five vertices, and hence is impossible if r _-__ 1. The 

lemma is proved. 

Let ~d~, where k = 2 or 3, denote the set of all p-vertex, k-connected graphs 

satisfying property P(fl,f2,'" ",f,). Set f i ~ ( f ~ , f z , ' " , f , ) = m a x ~ C 3 ( G ) .  We 

then have the following result. 

THEOREM 6. Let s be any integer such that 

2p - 4 - ~ ]  @ - 2 )  < s < ak (fl, f2,''  ", f,), 

for k = 2, 3. Then there exists a graph G E ~gk such that C3(G) = s. 

PROOF. We have established the theorem when r = 1 (see the corollary to 

Theorem 3, for k = 2; and the discussion following Theorem 5, for k = 3). Thus 

we proceed by induction on r. 

Let GEE ~k be such that C3(G) = t~k(fl , f2, ' ' ' , f , ) .  If C 3 ( G )  = 
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2 p - 4 -  Y-7=1 ~ -  2 )=  A(G), there is nothing to prove. Suppose therefore that 

C3(G) > A(G); then G has a separating 3-cycle, say T = (a, b, c, a). As before, 

let G1 (resp., G2) denote the subgraph of G induced by the vertices a, b, and c 

and all vertices of G in the interior (resp., the exterior) of T. Let Gi have pi 

vertices for i = 1,2, and let S1 t./$2 be the partition of {1 ,2 , . . . ,  r} such that 

{fJ I J E S~ } corresponds ~o the nontriangular faces of G,, for i = 1, 2. We must 

have C3(Gi)= /2k{j~ IJ E Si} for i =  1,2, since otherwise C3(G) would not be 

equal to ak ( s t , "  ", f,). We also note that if G is 3-connected, then so are G1 and 

Gz. 

Assume for the moment that both $1 and S2 are nonempty. Then by the 

induction hypothesis, we know that for any two integers sl, s~ such that 

2pl-a-~,~-2)<-_s,<-a~{~lj~S,} for i = 1,2, 
i~s~ 

there exists a pi-vertex graph Gj with property P ~  I / E  S~) such that C3(G,) = s~, 

for i = 1, 2. Since both of these graphs must have at least one facial 3-cycle, we 

can "fuse" them together along these 3-cycles to obtain a graph G '  with 

p = pl + p2 - 3 vertices, with C3(G')  = C3(GI) + C3(G2) - 1, and satisfying prop- 

erty P(fl, f 2 , "  ",/r). (We also note that if both G1 and G2 are 3-connected, then 

so is G'.)  This immediately implies that for every integer s with 2 p - 4  

- Y.7~1 ~ - 2) < s =< fik (f~, f2,'" ", f,), there exists a g.raph G '  E ~dk such that 
C3(G') = s. But we proved the existence of a graph G"E ~k with C3(G")= 
2p - 4 - E~=1 ~ - 2) in Lemmas 1 and 2. This completes the proof when both $1 
and $2 are nonempty. 

Suppose then that for every separating 3-cycle T in G, either $1 or $2 is empty 

(and hence that G~ or G2, respectively, are maximal planar). Without loss of 

generality, suppose S~ is empty and thus Gt is maximal planar. Since C3(G)= 
t~k (f~,-..,f~), it follows at once that C3(G1)= 3 p l -  8. This implies that G has a 

vertex v, of degree three in the interior of T (see [2]); clearly C3(G-vl)= 
C 3 ( G ) - 3 .  Let G ~ be the p-vertex graph obtained from G -  vl by placing a 

vertex vl in the interior of the facial cycle of length/1 and joining v'~ to three 

consecutive vertices on the cycle (see (b) in the proof of Lemma 1). Then we 

have C3(G 1) = C3(G - v~) + 2 = C3(G) - 1. We can continue this process until all 

p~-  3 vertices of G in the interior of T are exhausted. In this way, we obtain 

graphs G2, G3,...,G p,-3 with C3(G')=C3(G)-i, for i = 1 , 2 , . . . , p ~ - 3 .  If 

C3(G p,-3) > 2p - 4 - E;=I (fi - 2), then G p,-3 must have a separating 3-cycle TI. 

But any separating 3-cycle in G p'-3 must also be a separating 3-cycle in G. Hence 

the set of all vertices on and in say the exterior of TI will induce a maximal 
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planar  graph in G pl-3. We can thus repeat  the above  argument ,  and con t inue  

repeat ing it, to  obta in  a graph  G E ~dk with C3(G)  being any n u m b e r  in the  

indicated range. 

The  proof  of  T h e o r e m  6 is comptete .  

The  results here  may  be applied to find bounds  for  the n u m b e r  of  triangles in a 

t r iangulat ion of  the plane on a given set of points  [4]. 
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